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TECHNICAL MEMoRAMluM 1255 

EQUATIONS OF MOTION OF A R O C ~ T *  

By I?. R. Gantmacher and L. M. Levin 

The equations of motion of a rocket a r e  given i n  general form; 
a rocket is  defined as an apparatus with a l iquid o r  powder rocket 
motor. 

1. '?3lXOREM OF MOMENTUM AND "REOREM OF MOMENTS 

I n  considering the motion of the rocket, a t  each instant of time 
only the s t a t e  of those material par t ic les  which a t  tha t  instant  a r e  
w i t h i n  the control surface passing through the exter ior  surface of 
the body of the rocket and the ex i t  section of the nozzle sha l l  be 
included. 

In order t o  obtain the equations of motion of the rocket, the 
following procedure i s  used. 
i s  considered. A f i c t i t i o u s  sol id  body is denoted by S with 
mass m, which would be obtained if the rocket a t  the instant t 
so l id i f ied  ana ceased giving off part ic les . ,  The sol id  body S w i l l  
not be homogeneous; i n  some of i t s  parts, it w i l l  have t h e  density 
of a metal and in other par ts  the density of a gas, and so for th .  
It shall be assumed that the f i c t i t i o u s  so l id  body S is  invari- 
ably f ixed t o  the body of the rocket and from the instant  
(inatant of sol idif icat ion)  moves together w i t h  the rocket. 
momentum of the  body S aha l l  be denoted by Q. 

A n  arb i t ra ry  but f ixed instant of time 

t onwards 
The 

The system c consisting of a l l  the material par t ic les  that 
a t  the instant  t entered the composition of the rooket shall a l so  
be considered. At the instant t the syetem C coincide8 with the 
rocket, but at  the succeeding instants  cer ta in  of the par t iolee of 
the syetem c will be outside the rocket. The egstem and the 
sol id  body S have a constan% mase equal t o  the mass of the rocket 
a t  the inetant of' time t. The momentum of the system C re la t ive  

*"Ob Urarmeniakh Dvizhenia Rakety. " Prikladnaya mtematika 1 
MelrhanikB, Vol .  X I ,  No. 3, 1947, pp. 301- 312. 



2 NACA TI4 1255 

. t o  an immovable (more accurately Galilean) system of ocordinate axes 
w i l l  be denoted by K. Le t  F = dK/dt be the principal vector of 
the external forces acting a t  the instant t on the rocket (and 
therefore on the system ). 

Compare dK/dt and dQ/dt. The motion of each of the part5.cles 
of the system C sha l l  be considered as compounded. A par t ic le  
moves re la t ive  t o  S ( that  is, re la t ive  t o  the body of the rocket) 
but the solid body S i s  transported as a whole. For the absolute 
re la t ive  and transport velocit ies,  the notation va, vr, and ve 
sha l l  be used. Similarly f o r  the accelerations, the notation wa, 
W r r  and we i s  used. The Coriolis acceleration of the par t ic le  
shall be denoted by J. 

It is noted tha t  vr is equal t o  zero f o r  the par t ic les  of 
the body1 and for the p r t i c l e s  of the powder, whereas 
t o  zero f o r  the par t ic les  of the body and those par t ic les  of the 
powder, which a t  the given instant,  do not l i e  on the combustion 
surface. men2 

Wr i s  equal 

where J = C m j  
and 

i s  the principal vector of the Coriolis forces 

The re la t ive  velocity of the par t ic le  a t  the instant 
tl = t + dt  i s  denoted by v k .  For the elementary change i n  

'In the body are  included a l l  f ixed par t ic les  of the rocket. 

'In t he  following discussion, the subscript i t o  denote magni- 
tudes re la t ive  t o  the par t ic les  w i l l ,  for simplification, be omit ted;  
f o r  example, vai and m i  w i l l  be wri t ten a s  va and m, res- 
pectively. 

0 
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velocity 6vr ( re lat ive t o  the body of the r ~ c k e t ) ~ ,  
6Vr V b  - V r  = Wrdt, hence 

The momentum re la t ive  t o  the body of the rocket a t  the instant t 
of the par t ic les  or" the gas a.t that instant in the rocket is  denoted 
by Kr 
par t ic les  of the gas4 i n  the rocket a t  instant t by K l r .  Now 

arld the momentum re la t ive  t o  the body of the rocket of the 

where krdt 
t i c l e s  of the gas, which i n  the time in te rva l  d t  passed through the 
ex i t  section of the nozzle; b;. i s  the momentum re la t ive  t o  the body 
of the rocket of the mass of gas passing per second through the 
section of' the nozzle or, a s  used herein, the momentum ra t e  per 
second re la t ive  t o  the body of the rocket; 6 F  i s  the elementary 
change of the re la t ive  momentum of the gas occupying a f ixed volume 
(within the control surface). 

i s  the momentum ( i n  the re la t ive  motion) of those par- 

The vector k, has the dimensions of a force. 

The force kr  i s  called the equilibrant of the reaction forces 
or simply the reaction force.5 E p = - &/at i s  the mass flow 

3Here and i n  the folluwin@; discussions, the symbol 6 denotes the 
d i f f e ren t i a l  (elementary change) of the vector re la t ive  to  the body 
of the rocket. The elementary change re la t ive  t o  the i n i t i a l  system 
of axes (fixed) is denoted by d. 

%?or a rocket with l iquid reaction engine, the vector Kr is  
the momentuu of the par t ic les  of gas i n  the combustion chamber and 
nozzle and the par t ic les  of the l iquid moving i n  the tanks and the 
pipes supplybg f u e l  t o  the combustion chamber. 

51n the equivalent reactive force there a re  often included 
cer ta in  external forces; these w i l l  be considered more i n  d e t a i l  i n  
section 2. 
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per second and 
flow of the gas 
(1.2) anii 6.3) ,  

Substi tution 
of the expression 

u (the average a t  the exit 
re la t ive  t o  the nozzle6 k r  
there is  obtained 

section), the velocity of 
= VU. From equations 

on the r igh t  side of equation (1.1) f o r  Ernr 
from equation (1.4) and F f o r  m/d t  yields 

This equation expresses the momentum theorem f o r  the  so l id i f ied  
rocket, that  is, for the  so l id  body S. 

The kinet ic  moments of the System 2 a d  the body s a re  now 
corn i dered . 

The notation A ,  the kinet ic  moment of the system Z , 
and L of the body S i n  the  absolute motion, tha t  is, i n  the 
motion relat ive t o  the f ixed system of the coordinate axes,are 
introduced. 
i s  denoted by a subscript; thus, f o r  example, Lc is  the kinet ic  
moment of the  body S r e l a t ive  t o  its center of iner t ia  C and Ac, 
is  the kinet ic  moment of the system re la t ive  t o  i t s  center of 
i ne r t i a  C1. 

Tne pole r e l a t ive  t o  which the k ine t ic  moment is  taken 

Together with the absolute motion, the motion r e l a t ive  t o  axes 

The magnitudes referr ing t o  t h i s  motion shall 
passing through the point 
must be ~ o n s i d e r e d . ~  
be denoted by a prime. 

C and moving forward together with it 

Similarly i n  considering the motion r e l a t ive  t o  axes passing 
through C 1  (the center of iner t ia  of the  system Z ) and having 
a forward motion the corresponding magnitudes w i l l  be denoted by 
a double prime. 

6Lf the rocket has several nozzles, k r  = I P i U i ,  where p i  
i s  the gas flow of the i t h  nozzle a.nd U i  i s  the mean velocity 
a t  the ex i t  section of t h i s  nozzle. I n  the following discussion, 
a rocket with a single nozzle i s  considered; t h i s  assumption does 
not a f fec t  the general i ty  of the resu l t s .  

7The or igin of t h i s  system of coordinate axes C i s  not dis- 
placed re la t ive  t o  the body of the  rocket. 
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Applying the theorem of the moment of momentum re la t ive  t o  the 
center of i ne r t i a  t o  the system 
instant of time t 

c, there i s  obtained for the 

= Gc1 
%It 

at 
, 
I 

1 time t. 

t 

where 
on the rocket (and therefore on the system C ) at the instant of 

Gcl i s  the principal moment of a l l  the external forces acting 
t 

It is noted t h a t  Act' = Act. For, in  paasin@; t o  another syatem 
of coordinate axes moving t ranslat ional ly  re la t ive  t o  the first, there 
i s  added t o  the veloci t ies  of a l l  points of the system the same 
velocity constant i n  magnitude and direction. 
momentums w i l l  be proportional t o  the masses and are  i n  the same 
directions. Hence, they reduce t o  a single equivalent resul tant  
vector applied t o  the center of iner t ia  The moment of t h i s  
additional momentum vector re la t ive  t o  
Further 

The additional 

C 1 .  
Cl , w i l l  be equal t o  zero. 

whence 

becauss a t  the 
p o h t  C and 

instant t the point C 1  coincides with the 

- 
- = vc - vc-. = - - E;' dCIC 

a t  m 

By noting that a t  the instant t the points C1 and C 
coincide and therefore GOl = G, and recal l ing that Acl" = A,.' 
there is  obtained from equations (1.6) and (1.7) 

aA 
(1.8) 

0 
= Gc - at 

Again the motion of each par t ic le  of the system c sha l l  be 
'considered a s  compounded. 
axes moving forward together w i t h  the point 
as absolute, the motion of the body 
transport motion, and f i n a l l y  the motion of the par t ic le  relative t o  

The motion of the par t ic le  re la t ive  t o  the 

re la t ive  t o  these axes a s  the 
C sha i l  be considered 

S 
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the body S ( tha t  is ,  re la t ive  t o  the body of the rocket) as relat ive.  
Then 

Act = zr x mva 
a A f  
- =  Z;.xmwa a t  

where r is  the radiua vector of the par t ic le  drawn from the point C. 
The sum wr + w e  + j 
erat ion of the par t ic le  and it is  noted tha t  

i s  substi tuted instead of the absolute accel- 

a' 
at 
C zr x me = - 

- zr x m j  = H, 
(1 .9 )  

where H, i s  the principal moment of the Coriolis forces. There is 
obtained 

dhct dLcf 
- = - -  Hc + zr x mwr a t  a t  (1.10) 

AGin l e t  v b  be the re la t ive  velocity of the S r t i c l e  a t  the 
Fmtant t l  = t + dt. Then v b  - vr = wr d t  and therefore 

Cr x m w s t  = zr x mvb - xr x mvr 

It is  noted t h a t  

where Acr i s  the kinet ic  moment of 
re la t ive  motion8 at the instant t. 
moment of the gas a t  the instant of 
by Alcr. Further 

= hcr 

(1.11) 

(1.12) 

the gas within the rocket i n  the 

time t i  i s  denoted 
The value of t h i s  kinet ic  

8See the previous note re la t ive  t o  Kr. The magnitudes A c r  
refers  not t o  the fixed mass but t o  a fixed volume l i ke  

occupied by the gas. 
Kr 
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where rl is the radius vector a t  the instant tl of the particle,  
which a t  the instant t had the radius vector r. 

From tEife sum zrl x mvk, those components i n  which the end 
of the radius vector r1 
taken out. 
moment per second of the gas through the exit section of the nozzle 
In the re la t ive  motion ZrC multiplied by dt. 

exhnds beyond the limits of the  rocket a re  
The sum of these components w i l l  be equal t o  the kinebic 

r 
%c The sum of the remaining components gives 

Further the sum I(rl  - r) x mvlr = 0, because 
rl - r = 6 r  = vr d t  and w i t h  an accuracy up t o  inf ini tes-  

c. imals T b  - vr. Thus 

\ 

From equations 

r r where 6hc = Ale. - 
body. 

(l.ll), (1.12), and (1.131, 

+ 'rc 

(1.13) 

(1.14) 

A, r i s  the elementary change re la t ive  t o  the 

By substi tuting i n  equation (1.10) i n  place of the sum i t s  
expression from equation (1.14), there i s  obtained 

(1.15) 

The kinetic moment of the gas per second i n  the re la t ive  motion 
ZrC has the dimensions of the'moment of a force.  The moment 2rc 
i s  called the reactive moment? From equations (1.8) and (1.15), there 
i s  obtained 

MCr - -  - G -  Z r c + H , - -  ' 
at at (1.16) 

Equation (1.16) determines the derivative w i t h  respect t o  time 
of the kinet ic  moment of the sol idif ied rocket S i n  its motion 

'In the reactive moment, there a re  often included additional 
moments of cer ta in  external forces. See sect ion 2. 
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relative t o  axes passing through the center of i ne r t i a  C of the 
forward moving body S. 

2. REACTIVE FORCES 

The area of the ex i t  section of the nozzle is  divided into 
elementary areas dg. The mss per second flowing through the 
area dg is  denoted by Udo and the re la t ive  velocity of the 
gas pass- through th i s ' a r ea  by 
passing through the exit section of the nozzle w i l l  then 
be p = Jvda, 
elements du of the exit section. 

vr. The mass of gas per second 

where the summation is taken over a l l  the 

The vector - UdChrr, having t h e  dimensions of a force,  a re  
This force is called the elementary react ive force. considered. 

It originates i n  the par t ic les  of the gas separating from the 
rocket through the area W. 
t a ry  reactive forces  is  equal t o  
re la t ive  t o  the pole C is  equal t o  - 2rc where k, and ZrC 
a r e  the momentums per second and kinetic moment of the gas re la t ive  
t o  the body of the rocket. 

The principal vector of the elemen- 
and the principal moment - kr, 

I n  the system of reactive forces there are, however, often 
included cer ta in  external forces, namely, those arising from the 
atmospheric pressure on t h e  body of the .rocket and from the pressure 
of the issuing parts of the gas on those remaining i n  the rocket, 
and additional forces  due t o  the unsteady motion of the gas. 
phenamenon i s  made c lea r  by the following considerations. 

This 

The combustion i n  the rocket apparatus i s  assumed t o  be a t  
standard conditions with the rocket immovably fixed. In t h i s  case 

Q = O  Hc = .O 

I;,' = 0 

J = O  

F = F w + W  

Gc = Gc* + Gc* 

where F+ and G,c a r e  the p r i n c i p l  vector and the principal 
moment of the forces of the atmospheric pressure and pressure of the 
external part of the gas on the exit section of the nozzle. 
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From equations (1.5) and (1.6), thenlo 
- 

6 A r  
C - G  p - 2  + G c * - -  at 

*C  r c  

In measurements on the t e s t  stand there are generally deter- 
mined the pressure forces of the rocket on the supports. These 
pressures a re  characterized by the principal vector -F and the 
principal moment -G*c, which include i n  addition t o  the purely 
reactive forces the additional forces and moments I?*, Gc*, 
-&/at, -dLrc/dt 

i n  
of 
is  

In  the following discussion in to  one system shall be com- 
bined: (1) the purely reaotive forces, (2)  the forces a r i s ing  
from the atmospheric pressure11 and the pressure of the external 
part of the gas (issuing from the rocket je t ) ,  and (3) the  addi- 
t i ona l  forces due t o  the nonsteadiness of the motion of the gas 

. t h e  rocket. All these forces w i l l  be included in the system - 
reactive forces. The principal vector of these forces  -F+ 
denoted by T and the principal moment -G*c by h. Then 

Generally i n  computing the reactive force T and the reactive 
moment Mc the th i rd  components i n  equations (2.1), that is, 
1 BKr/dt and SArC/dt a r e  neglected.12 

''It is here a s s h e d  tha t  the flow of the gas in  the chamber and 
nozzle f o r  the moving and stationary rocket i s  the same. This 
assumption is  equivalent t o  neglecting the e f fec t  of the acceleration 
of the rocket on the re la t ive  motion of the gas, 

''By the forces  of the atmospheric pressure is meant the forces 
due t o  constant atmospheric pressure on the external surface of the 
rocket a t  standard conditione. 

12That is, the motion of the gas in  the rocket i s  considered as 
qua si- stationary . 



10 HACA TM 1255 

3. FINAL FORMULATION OF THE FUNDAMENTAL T H E O ~ E ~ S .  pRTNcIrm OF 
SOLIDIFICATION 

F r o m  the number of e x t e r n 1  forces were separated the forces 
a r i s ing  from the uniform atmospheric pressure and the pressure or 
the  external gas, which were included (section 2 )  in the system of 
reactive forces. These forces have the principal vector F* and 
the principal moment Gc*. The principal vector and the p r i n c i p l  
moment of the remaining external forces a re  now denoted by 
and G. 

F 

With t h i s  notation, the equation of the change of momentum (1.5) 
and the equation of the kinetic moment f o r  the so l id i f ied  rocket (1.16) 
assume the form 

By introducing these equations the reactive force T and the 
moment Mc according t o  equations (2.1), there i s  f i n a l l y  obtained 

dQ - = F + T + J  at  
C - -  

dt - Gc + Mc + Hc 
aL' 

From these equations the following principle of sol idif icat ion is  
obt a ined : 

The equations of motion of a rocket a t  an a rb i t ra ry  instznt of 
time 
a solid body of constant m 8 s s  if it i s  assumed tha t  the rocket became 
r ig id  and so l id i f ied  a t  the instant of time t 
give out par t ic les )  and that  t o  the f i c t i t i o u s  sol id  body thus 
obtained there were applied: 
rocket, (2)  reactive forces, and (3) Coriolis forces. 

t may be wri t ten i n  the form of the equations of motion of 

(that is, ceased t o  

(1) external forces a c t i w  on the  
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4, SECOND DIZRIV..ION OF -THE EQUATION OF MOMENTUM AND THE EQUATION 

OF MOMENTS 

An i n f in i t e ly  amall interval of time d t  is considered and the 
elementary Increments, f o r t h i s  interval, CWF dK and dQ the momen- 
tum of the system 2, and the so l id  body S are compred. 

For t h i s  p u ~ p o ~ e ,  the volqw oocupied by the rocket is 
divided in to  three p t s :  
(2) the volume occupied a t  the instant 
fue l ,  and (3) the volume occupied a t  the instant 
of gas in  the rocket. 
volumes are denoted by the subscripts 1, 2, and 3, respectively. 

(1) the volume occupied by the body, 
t by the powder (or l iquid) 

t by the par t io les  
Tbe p r t e  of the momentum referring t o  these 

Evidently f o r  the body, 

The powder is  next considered. A t  the instant t, K = Q2; 
2 but a t  the instant tl = t + d t  the vector K2 differs  f rm Q2 

by the momentum of the elementary mass of powder that burned in the 
time interval  dt. This deficiency of momentum is presented in the 
fOmn k d t  where k is  the momentum expenditure per second of 
the pmder. Then13 

P P 

5 2  = - kl?dt 
(4.2) 

The volume of the part of the rocket occupied a t  the instant t 
by the gas i s  now considered. The momentum of the par t ic lee  of gas 

13The momentum of the gas occupying at the instant tl the volume 
of burned m e r  after d t  seconds is not considered here. The 
r a t i o  of t h i s  momentum t o  the value 
the  density of the gas t o  the density of the powder and is very small. 
Thus by 3, the expenditure per seoond of the momentum of the powder 
multiplied by 1 - is bnown. For the rocket with l iquid 
fuel dF;2 = d(+, - k d t  + mor where IC: 

P 0 
l iquid f u e l  re la t ive  t o  the motion and 5 the consumption 
per Beconti of the momentum of the f u e l  in the transport motion ml- 
t i p l l e d  by 1 - 6 ,  where 6 is the r a t i o  of the density of the 
f u e l  vapors t o  the density of the f u e l  i tself ,  

5 d t  is equal t o  the r a t i o  of 

is the momentum of the 
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in t h i s  volume relative t o  the body of the rocket is  denoted (as i n  
section 1) by ICr. The corresponding increment is dKr, where the 
d e f e r e n t i a l  d takes account of the vector re la t ive  t o  the sta- 
tionary system of coordinates. But then 

where SKr i s  the elementary change of the vector Kr re la t ive  t o  
the body of the rocket and W is  the angular velocity of the body. 

The increment of momentum of the gas i n  the volume considered 
i n  the transport motion is  now considered. 
with 
the denszty of the gas p at the instants  t and tl is  the same. 
In  the general case, however, it is  necessary t o  take into account 
a l so  the change i n  density p. Hence, i n  the general case the 
required increment in the transport motion i s  equal t o  

This increment agrees 
dQ3 in the case where a t  each p o i n t a f  the volume considered 

dQ3 +\\\ dt  vedr 

where the integral  i s  extended over that  part of the volume 
a t  the lnstant t is  occupied by the gas, ve is  the transport 
velocity of the element of volume dT, and &/at is  the r a t e  of 
change of the density p i n  the given volume element dT. Hence 

W that 

% = dQ3 +I[! $ dtvedT + SKr + w x IF at  (4-3) 

The increments i n  the momentum of the par t ic les  within the 
volume of the rocket have been considered. I n  computing dK, 
howemr, it i s  necessary t o  take into account a l so  the moment a t  the 
time tl of those par t ic les ,  which in the interval  from t 

. t o  
This momentum is  equal t o  (ke + k$dt where ke is  the r a t e  of 
expenditure per second of the momentum of the gas through the e x i t  
section of the nozzle in  the transport motion and 
re la t ive  motion. Thus 

tl = t + d t  passed through the ex i t  section of the nozzle. 

b;. i n  the 

dK = dK1 + % + % + (ke + h ) d t  
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Substituting 5, cU$, and 5 from equations (4.1), (4.2) 
and (4.3), respectively, there i s  obtained 

d K = d Q -  (kp - kt3 \\\ $ d t  ve dT (4.4) 

A s  before, the principal vector of the forces of the atmospheric 
pressure and the pressure of the external par t  of the gas on the 
rocket i s  denoted by F* 
external forcefl by F. 
system z , dK/dt = F + F* and therefore from equation (4.4) 
there is obtained 1 4  

and the principal vector of the remaining 
According t o  the momentum theorem f o r  the 

9 at = F - kr + F W  - $- sur + k p - ke - \\I $ ve a7 - 0 x $” (4.5) 

where the last term - x Kr represents half the Coriolis force J. 
Hence, by taking equations (2.1) in to  account,equation (4.5) can be 
reduced t o  the form 

Similar Considerations permit obtaining the equation of moments 

(4.7) - -  C - Gc -I- M, + z C p t  - 0  XA; - at 

where 
is  the 
of the 
in  the 
moving 

i s  the kinetic moment of the powder per second and ZC, 2G P 
kinetic moment of the gas per second through the ex i t  section 
nozzle. In both cases, there i s  considered the kinet ic  moment 
transport motion of the body re la t ive  t o  a system of axes 
forward together with the center of i ne r t i a  C of the body S. 

14Thia equation holds a l so  for the l iquid f u e l  rocket. In t h i s  
is  the momentum of the gas and the f u e l  i n  t h e i r  case, however, 

relative motion. 
K r  
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5. EQUATION FOR THE MOMENTUM, CORIOLIS FORCE, AND CORIOLIS M o l "  

By comparing equations (4.6) and (4.7) with equations (3.1), 
the equations f o r  the Coriolis force J and the Coriolis moment Hc 
a re  obtained: 

These equations a re  evidently sim l i f i e d  if the density of the gas 
(This equation holds f o r  does not vary with time, t ha t  is, ap$t  = 0. 

the quasi-stationary motion 02 the gas i n  the rocket.) 

The expressions (5.1) for J a re  first considered. The mass of 
powder expended per second (o r  what amounts t o  the same thing, the 
addition of the mass of gas)  is  denoted by 
per second through the ex i t  section of the nozzle by 
evidently 

p 1  and the mass of gas 
p2. Then 

(5 .3 )  

Further, k_dt represents the momentum of an elementary mss 
J? 

of powder plat burning i n  the interval  of time at. The center of 
iner t ia  of t h i s  elementary mass of powder i s  denoted by C and 
the velocity of the point 
by vcp. Then kp = v1vCp- 

P 
Cp i n  the transport motion of the body 

If it i s  assumed t h a t  the elementary mass of powder plat is  
symmetrically placed re la t ive  t o  the axis of the rocket, the point 
C w i l l  l i e  on t h i s  axis. If the mass p dt  i s  symmetrical with 
respect t o  the mean section of the powder containers, 
the plane of t h i s  section, 

P 1 
w i l l  be i n  

cP 

I n  the same manner, the elementary mss of gas 

the center of iner t ia  of t h i s  elementary mass i s  denoted and 

p2dt passing 
through the ex i t  section of the nozzle i n  time d t  i s  considered. 
By Ce 
by vce the transport velocity of t h i s  center. Then ke = pZvce. 
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If the gas passing through the exit section is symmetrical, the 
l i e s  on the center of the exit section of the nozzle. point Ce 

By rp and re the r a d i i  vectors o f , t h e  points Cp and Ce, 
respectively, drawn from any pole 0 f ixed t o  the body a re  denoted. 

L e t  r denote the'radiua vector of an arb i t ra ry  point within 
the rocket. 
of a solid body, 

By w i n g  the expression f o r  the veloci t ies  of the points 

vcp = vo + O x  rp 

vco = vo + W  x re 

v e = v O + ~ x r  

(5.4) 

On the basis of these equations and the eqmtions kp = y c p  
and ke = ~2 Vcet 
assumes the form 

equation (5,1), taking account of equation (5.3), 

By comparing t h i s  equation with the -usual expression for the 
and taking into account the arbi-  Coriolis force 

t ra r iness  of the vector 0 ,  there r e su l t s  
J = - 2 0 x ICr 

where Kr 
re la t ive  t o  the rocket and the integral  on the r igh t  side is 
extended over the en t i re  volume W occupied by t h e  gas. 

i s  the momentum of the gas i n  the rocket in i t s  motion 

Equation (5.6) is of a general character.= It determines the 
momentum of the gas (o r  l iquid) enclosed i n  the  given volume in the 

15Equatiom (5.6) and (5.2) f o r  Kr and Hc can be obtained 
d i rec t ly  If the derivatives a re  computed with respect t o  time of the 

taken over the mass occupying the given volume a t  the time t .  
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case where the incoming and outgoing masses p and pz of the gas 
through the surface bounding t h i s  volume and t i e  per second change in 
density at  each point of the volume a re  given. In t h i s  equation, rp 
is  the radius vector of the center of i ne r t i a  of the incoming mass per 
second pl and re the radius vector of the outgoing mass p2. 

The par t icular  case where +/at Z 0 ( for  example the quasi- 
stationary notion of a gas, the a rb i t ra ry  motion of an incompressible 
liquidl6, and so  for th)  is considered. 
t ion  (5.J), there is 
p = dm/dt. If the vector b = CeCp i s  introduced, equation (5.6) 
and the equation for J become 

I n  t h i s  case according t o  equa- 
p1 = p2 = p where for the case of the rocket - 

8 = pb J = -  2W X h3 = - 2p @ X b) (5 .7)  

Equation (5.2) f o r  the Coriolis moment Hc is  now considered. 
and that the equivalent vector of IT it i s  assumed tha t  

the momentum of the par t ic les  of gas i n  t h e i r  re la t ive  motion passes 
through the center of iner t ia  C, tha t  is, Acr = 0, equation (5.2) 
becomes 

&/at = 0 

HC 

For example, the case 
considered. The moment of 

of plane-parallel motion of the rocket is  
iner t ia  of the body re la t ive  t o  the equa- 

t o r i a l  axis passing through the point 
plane of the motion i s  denoted by I. The moment of i ne r t i a  of the 
mass of powder. burned i n  d t  seconds w i l l  then be equal t o  -dI. 
Hence the kinetic moment of t h i s  mass w i l l  be 

C and perpen4icular t o  the 

On the other hand, the kinetic moment ( in  the t ranslat ional  
motion) of an elementary mass of the gas passing through the exi t  
section i n  time d t  w i l l  be -dm re w where re = me. Thus 2 

In t h i s  case there is the exact equation. 
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6. EQUATION OF MOTION O F  THE CENTER OF =TU OF TBE: ROCKET 

Frob the principle of so l id i f ica t ion  f o r  the instant of time t ,  
there r e su l t  B 

R T W ~ = F + T + J  ( 6 4  

where m is the mass of the rocket a t  instant t and wc is  the 
acceleration of the center of iner t ia  C of the so l id i f ied  rocket 
at time t, tha t  is, of the body S. 

During the combustion of the fue l ,  huwever, the center of 
iner t ia  of the rocket is displaced re la t ive  t o  the body. 
of the center of iner t ia  of the rocket re la t ive  t o  the in i t ia l  
(fixed) system of coordinates can be represented in the form of a 
compound motion in which the center of inertia moves re la t ive  t o  the 
body ( r e l a t ive  motion) and the body of the rocket moves re la t ive  t o  
the f ixed system of axes (transport motion). Then vC and wc 
a re  the transport velocity and acceleration and vcr and Wcr the 
re la t ive  values. The absolute velocity and the acceleration of the 
center of iner t ia  a r e  detemined from the equations 

The motion 

Determining from the secor,d equation wc and substi tuting i n  
equation (6.1), there is obtained the equation of motion of the center 
of inertia of the rocket. 

XIW = F  + T  + J +mer + 2mO X Vcr (6 .2 )  

The expressions f o r  the magnitudes vcr and Wcr sha l l  be 
found. The body of the rocket may here be considered as fixed. Let 
the point 0 of the body of the rocket be taken a s  the i n i t i a l  
and C and C f  the posit ion of the center of i ne r t i a  of the rocket 
a t  the instant t and t '  = t + dt. "hen for the moments of the 
times t and t f ,  there r e su l t s  

(m + dm) rcf = \ \ \  p (t + at) r dT 
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where rc I E, rCt = E t  = rc + 6rc, and p is  the density of the 
elementary volume of the rocket. 
the en t i r e  volume of the rocket (including the body). 

"he integration is extended over 

By subtracting the f irst  re la t ion  from the second and neglecting 
the terms of the second-order smallness, 

dm rc + m 6r, = - p1 rp + \\\ 8 d t  r d T  

whence it follows tha t  

o r  on the basis of equation (5.6) 

By different ia t ing the equation (6 .3 ) ,  

or  

In the quasi-stationary case a p / b t  E' 0, p2 = pl =. p, 

6Kr/dt LI 0, &2/& E 0, and equations (6.3) and (6.4) assume the 
f om 

m e  computations conducted by these equations show tha t  the mag- 
nitudes vcr and wcr a r e  negligibly s m a l l  i n  comparison with the 
mean veloci t ies  and the accelerations on the activk part of the 
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trajectory. Hence i n  equation (6.2), the term mwcr may be neglected 
lin cornprison with the reactfve thrus t  T. The term 2 m 0  x vcr fs 

order a s  
order a s  J because I rc - r2 I i s  of the same 

7. EQUATIONS OF THE ROTATiONAL ,MOTION OF TEE ROCKET 

BY e ,  7, and 5 are  denoted principal central  axes of 
iner t ia  of the rocket, by 11, Iz, aiid Ig tlie'moments of 
iner t ia  of the rocket re la t ive  t o  these axes, by p, q, and r 
the projections of the angular velocity of the body 
axes. 

W on these 

It is first assumed tha t  the directions of the axes of h e r -  
t i a  e , 7, and 5 are  fixed re la t ive  t o  the body during the 
ent i re  time of conbustion. 
for rockets because it i s  assmed that  a t  a l l  times the axis  of the 
rocket i s  one of the principal axes of iner t ia  and the two other 
principal axes of iner t ia  may be a r b i t r a r i l y  chosen i n  the plane 
pe-rpendicular t o  the axis  of the rocket. 

Tnis natural  assumptfon is  always made 

Under the assumptj-on made, the principal axes of Iner t ia  of the 
sol idif ied rocket, tha t  is,of the body S, w i l l  a t  a l l  t h e s  be 
p m l l e l  t o  the axes e , 7, and !,. The corresponding moments of 
iner t ia  for the body S w i l l  have constant values equal t o  the 
values of the moments of iner t ia  11, Iz, and I 3  of the rocket 
a t  the instant of time t. It fo l lows  tha t  p, q, and r are  the 
projections of the angular velocit ies of the so l id  body S on the 
principal central  axes of iner t ia  of t h i s  body. Hence, making use 
of the principle of solidification, the three equations of the rota- 
t iona l  motion can be writ ten i n  the form of Eulerl7 

17Here and i n  the following discussion, the parentheses a f t e r  
each equation indicate that  two other equations a r e  obtained by 
cyclical  interchange of the l e t t e r s  and subscripts in the paren- 
theses. 
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where N i s  the sum of the moments r e l a t ive  t o  the ax is  4 of all 
the external reactive and Coriolis forces and similarly for N 
and IT 

t 

5 .  
7 

The three equations (7.1) together with the three scalar  equa- 
t ions of motion of the center of iner t ia  consti tute a system of s ix  
equations, which deternines the motion of the rocket. 

For comgleteness, the general case when the principal central  
axes of Fnertia change t h e i r  directions re la t ive  t o  the body of the 
rocket sha l l  be considered. 

By e I, rj', and 5 the directions of the principal axes 
of iner t ia  of the body S i s  denoted, tha t  is, the directions fixed 
re la t ive  t o  the body and coinciding with the directions 
and 5 a t  the time t. The projections of the angular velocity 0 
on the axes E l ,  T)', and [ '  are  denoted by p', q l ,  and rl 
respectively. 
moment of time t 

E ,  7, 

Applying the principle of sol idif icat ion,  f o r  the 

( 7 . 2 )  

where N i s  the sum of the projection of the external reactive 
and Coriolis forces  on the axis  l ,  and so  for th .  By n the 
angular velocity of the trihedron [ ~ ) t  
the rocket i s  denoted. Let W/dt be the derivative of the vector 
re la t ive t o  the body of the rocket and 
re la t ive  t o  the axes E q t  . Then 

E 
re la t ive  t o  the body of 

6U/dt the derivative . 

The projections of 
a d  t 1 a re  equal t o  
jections of the vector 

the vector dW/dt on the axes e l ,  q ' ,  
dp'/dt, dql/dt, and dr ' /dt .  The pro- 
6W/dt on the axes e ,  0 ,  and 5 are  

equal t o  dp/dt, dq/dt, and dr/dt. Because.at 'the instant t 
the directions g l ,  T) I , and 5 coincide w i t h  the directions 
7, and 5 for t h i s  instant of time, from equation (7.3) 

GzL at = Q at + n,r - i+q ( E ,  T), 5 ;  P, 9, r) 
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It is noted that p' = p, 9' = 9, and r' = r at the 
instant t. Substituting in equation (7.2) in place of dp'/dt, 
dqf/dt, ' and ctrl/dt their expressions from equation (7.4) 
there is finally obtained 
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